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Bachelor of Science (B.Sc.) Semester—III
Examination

MATHEMATICS
(M5–Advanced Calculus, Sequence & Series)

Paper—V

Time—Three Hours] [Maximum Marks—60

N.B. :— (1) Solve all the FIVE questions.

(2) All questions carry equal marks.

(3) Question No. 1 to 4 have an alternative.
Solve each question in full or its alternative
in full.

UNIT—1
1. (A) By using Lagrange's Mean Value Theorem, show

that
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(B) By using ∈ – δ technique prove that :
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UNIT—III

3. (A) Let < xn>, < yn> be two sequences such that
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, where x and y are

finite numbers, then prove that :
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(B) Show that the sequence < xn>, where 
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a monotonic decreasing sequence. Also show that it

is bounded and 0xLim n
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=
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OR
(C) Show by applying Cauchy's convergence criterion

that the sequence < xn> given by
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Further show that it is monotonic increasing. 6
(D) Prove that the sequence < xn> converges if and only

if it is a Cauchy sequence. 6
UNIT—IV

4. (A) Test the convergence of the series whose nth term

is 













 +

−
n

1n
log

n
1

 by using comparison test.
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(B) Show that the series ∑
∞

= 1n
pn

1
 is convergent if p > 1

and divergent if p ≤  1 by using Cauchy's Integral
Test. 6

OR
(C) Test for convergence of the series
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by ratio test. Also test the convergence for x = 1.
6

(D) Test the alternating series ...
7
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convergence. Also show that it is conditionally
convergent. 6

Question—V

5. (A) Find 'c' so that 
ab
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f(x) = ex, a = 0, b = 1. 1½

(B) Show that )y,x(fLimLim)y,x(fLimLim
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(C) Find the stationary points of u = x2 – 4xy + 2y2 + 2x.
1½
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(D) If A, B, C are the functions of x and y, then show
that the envelop of Am2 + Bm + C = 0 is
B2 = 4AC, where m is the parameter. 1½

(E) Show that the sequence 〉
+

〈
1n

n  is bounded,

∀ n ∈ N. 1½

(F) Find n0 ∈ N such that 0nn
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(G) Test for convergence of ∑ nn/1  by root test.
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(H) Test the absolute convergence of
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(C) Investigate the continuity of function :
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(D) Expand f(x, y) = x2 + xy + y2 in powers of (x – 2)
and (y – 3) by using Taylor's theorem. 6

UNIT—II

2. (A) Show that the envelope of the straight line
αα=α+α cossinsinycosx l , where α is the

parameter, is the curve 3/23/23/2 yx l=+ . 6

(B) Find the envelope of the straight line 1
b
y

a
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when ambn = cm + n, where a and b are the parameters
and c is a constant. 6

OR

(C) Show that minimum value of :
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 is 3a2. 6

(D) By using Lagrange's multiplier method, find the
minimum value of x2 + y2 + z2 subject to condition
x + 2y – 4z = 5. 6
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